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Mobile Supercomputers  
for the Next-Generation 
Cell Phone

M obile devices have 
prol i ferated at  a 
spectacular rate, with 
more than 3.3 bil-

lion active cell phones in the world. 
Soon, improvements to today’s smart 
phones, such as high-bandwidth 
internet access, high-definition video 
processing, and interactive video 
conferencing will be commonplace.

The Internat iona l Telecom-
munications Union has proposed 
fourth-generation (4G) wireless tech-

nology to increase bandwidth to 
maximum data rates of 100 Mbps for 
high-mobility situations and 1 Gbps 
for stationary and low-mobility sce-
narios like Internet hot spots (www.
ieee802.org/secmail/pdf00204.pdf). 
This translates into an increase in 
computational requirements of 10 to 
1,000 times over previous third-gener-
ation (3G) wireless technologies, with 
a power budget of approximately 1W 
for all the computation. Other forms 
of signal processing, such as high-def-

inition video, are also up to 100 times 
more compute-intensive than current 
mobile video. Figure 1 shows the peak 
processing throughputs and power 
budgets of 3G and 4G protocols. Con-
ventional processors cannot meet 
these protocols’ power-throughput 
requirements. 

Research solutions, such as VIRAM 
and Imagine, can achieve the per-
formance requirements for 3G, but 
generally exceed the power budgets 
of mobile terminals. The signal-
processing on demand architecture 
(SODA) improved upon these solu-
tions and could meet both the power 
and throughput requirements for 3G 
wireless (Y. Lin et al., “SODA: A Low-
Power Architecture for Software 
Radio,” Proc. 33rd Ann. Int’l Symp. 
Computer Architecture, 2006, pp. 
89-101).

For 4G wireless protocols, the 
computational efficiency of mobile 
computer systems must be increased 
to greater than 1,000 Mops/mW. 
4G uses three central technologies: 
orthogonal frequency division mul-
tiplexing (OFDM), low-density parity 
check (LDPC) code, and multiple-input 
multiple-output (MIMO) techniques. 
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AnySP demonstrates that power efficiency can be achieved on a 
fully programmable processor in the context of a future mobile 
terminal supporting 4G wireless and high-definition video 
coding.
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Figure 1. Peak processing throughputs and power budgets of 3G and 4G protocols. 
Conventional processors cannot meet these power-throughput requirements.



Next-generation mobile computer system designs must 
address three issues: efficiency, programmability, and 
adaptivity.
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Fast Fourier transforms (FFTs) are 
key because they route signals from 
the baseband to the subcarriers. 
LDPC codes provide superior error-
correction capabilities, however, 
parallelizing the LDPC decoding algo-
rithm is more challenging because of 
the large amount of data shuffling. 
MIMO is based on the use of multiple 
antennae for both transmission and 
signal reception and requires com-
plex signal-detection algorithms. 
The need for higher bandwidth and 
increased computational complex-
ity are the main reasons for the 
two-orders-of-magnitude increase 
in processing requirements when 
moving from 3G to 4G.

High-definition video is also an 
important application that these plat-
forms must support. Figure 1 shows 
that the performance requirements of 
video exceed those of 3G wireless, but 
are less than those for 4G wireless. 
However, the power budget dedi-
cated to video is generally smaller. 
Moreover, the data access complex-
ity in video is much higher than 
wireless, since algorithms operate 
on two- or three-dimensional blocks 
of data. Thus, video applications 
push designs to have more flexible, 
higher-bandwidth memory systems. 
High-definition video is just one 
example of a growing class of appli-
cations with diverse computing and 
memory requirements that next-gen-
eration mobile devices must support.

Next-Generation Design 
Strategies

3G mobi le  c omput er  s y s -
tems employ a combination of 
general-purpose processors, digital-
signal processors, and hardwired 
accelerators to provide the giga-oper-
ations-per-second performance on 

milliWatt power budgets that today’s 
cell phones require. However, such 
heterogeneous organizations are 
inefficient for companies to use in 
developing, building, and maintain-
ing software. Further, as the amount 
of functionality integrated onto their 
mobile terminal increases, hard-
wired solutions waste silicon area 
and power with many single-use 
hardware blocks.

Next-generation mobile computer 
system designs must address three 
issues: efficiency, programmability, 
and adaptivity. The existing compu-
tational efficiency of 3G solutions is 
inadequate and must be increased for 
4G. As a result, straightforward scal-

ing of 3G solutions by increasing cores 
or data-level parallelism is inadequate. 
Programmability provides the oppor-
tunity for a single platform to support 
multiple applications and even multi-
ple standards within each application 
domain. Last, hardware adaptivity is 
necessary to maintain efficiency as 
the core computational characteristic 
of the applications change.

3G solutions rely heavily on the 
widespread amounts of vector paral-
lelism in wireless signal processing 
algorithms, but lose most of their 
efficiency when vector parallelism is 
unavailable or constrained, as hap-
pens with high-definition video.

Designing efficient architectures 
for future mobile systems requires 
analyzing the anticipated workloads. 
While performing detailed analysis 
of the computation kernels for 4G 
wireless and high-definition video 
encoding and decoding (h.264), we 
elicited five key insights:

•	 Opportunities for single-instruc-
t ion, mult iple data (SIMD) 
parallelism vary widely across 

the algorithms. Some have large 
inherent vectors, up to 1,024 ele-
ments in length. However, most 
algorithms have small to moder-
ate vectors.

•	 Algorithms with smaller vector 
lengths frequently contain a 
high degree of identical threads, 
where each thread performs the 
same instructions, but on discon-
tinuous data. A large percentage 
of temporary values generated 
during the computation are 
short-lived and need not be saved 
to a register file.

•	 There is a small set of arithmetic 
instruction pairs that occur with 
high frequency.

•	 Each algorithm repeatedly uses a 
small set of predetermined data-
shuffling patterns.

AnySP Mobile 
Supercomputer

To address these challenges, we 
highlight the AnySP advanced-signal-
processing architecture proposed by 
researchers at the University of Michi-
gan, Arizona State University, and 
ARM Limited (M. Woh et al., “AnySP: 
Anytime Anywhere Anyway Signal 
Processing,” Proc. 36th Ann. Int’l 
Symp. Computer Architecture, 2009, 
pp. 128–139). AnySP seeks to create a 
fully programmable architecture that 
supports 4G wireless communication 
and high-definition video decoding.

Such a design would need to reach 
the computation efficiency levels of 
nearly 1,000 Mops/mW that only ASIC 
solutions have achieved previously. 
Programmability is recognized as a 
first-class design constraint, thus no 
fixed-function hardware blocks are 
employed.

To overcome the typical pitfalls of 
relying on SIMD parallelism across a 
wide variety of algorithms, a configu-
rable SIMD datapath is created. This 
supports three execution scenarios: 
wide vector computation (64 lanes), 
multiple independent narrow vector 
computation threads and chained 
computation subgraphs on moder-
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ately wide vector computation. This 
inherent flexibility lets the datapath 
be customized to the application while 
still retaining the high execution effi-
ciency that SIMD offers by reducing 
control overhead. AnySP also attacks 
the traditional inefficiencies of SIMD 
computation: register file power, data 
shuffling, and reduction operators.

Figure 2 shows the AnySP process-
ing element (PE) architecture, which 
consists of integrated SIMD and scalar 
datapaths. The SIMD datapath in turn 
consists of eight groups of 8-wide 
SIMD units, which can be configured 
to create SIMD widths of 16, 32, and 
64. Each of the 8-wide SIMD units 
comprises groups of flexible func-
tional units (FFU). The FFUs contain 
the functional units of two lanes con-
nected through a simple cross bar. 
Eight SIMD register files (RFs) feed the 
SIMD datapath and each 8-wide RF 
has 16 entries. The data shuffle—or 
swizzle—network aligns data for the 
FFUs. It can support a fixed number of 
swizzle patterns of 8-, 16-, 32-, 64-, and 
128-wide elements. Finally, a multiple 
output adder tree can sum groups of 
4, 8, 16, 32, or 64 elements, then store 
the results in a temporary buffer.

The local memory consists of 16 
memory banks. Each bank is an 8-wide 
SIMD containing 256 16-bit entries, 
totaling 32 Kbytes of storage. Each 
8-wide SIMD group has a dedicated 
address generation unit (AGU). When 
not in use, the AGU can run sequen-
tial code to assist the dedicated scalar 
pipeline. The AGU and scalar unit 
share the same memory space as the 
SIMD datapath. To accomplish this, the 
design includes a scalar memory buffer 
that can store 8-wide SIMD locations. 
Because many of the algorithms access 
data sequentially, the buffer acts as a 
small cache that helps to avoid multiple 
vector-bank accesses.

Configurable Multi-SIMD 
Width Support

The individual algorithms in the 
applications that we studied had 
varying SIMD widths. However, inde-

pendent threads were not dominant. 
Rather, the system would run the 
same task many times for different 
sets of data. Each task was indepen-
dent of others, running the exact 
same code and following almost 
the same control path with the only 
difference being the set of memory 
addresses accessed.

To support these types of kernel 
algorithms, AnySP was designed as a 
multi-SIMD-width architecture. Each 
group of 8-wide SIMD units has its 
own AGU to access a different data 
stream. The 8-wide groups can also 
be coalesced to create SIMD widths 
of 16, 32, or 64. This feature lets the 
system exploit data and thread par-
allelism together for large and small 
SIMD-width algorithms.

Small SIMD-width algorithms like 
intraprediction and motion compen-
sation from h.264 video decoding can 
process multiple macroblocks at the 
same time while exploiting the 8-wide 
and 16-wide SIMD parallelism within 
the algorithms. Meanwhile, large 
SIMD-width algorithms like FFT and 
LDPC can use the full 64-width SIMD.

Temporary Buffer and 
Bypass Network

AnySP implements temporary 
register buffers and a bypass net-
work to reduce power consumption 
and the number of RF accesses. The 
temporary register buffers are imple-
mented as a partitioned RF. The 
main RF contains 16 registers, but 
the design also adds a second parti-
tion containing four registers, making 
20 registers total. This small, parti-
tioned RF shields the main RF from 
accesses by storing values that have 
short lifetimes.

The bypass network is a modi-
fication to the writeback stage and 
forwarding logic. Typically, in proces-
sors, data forwarded to eliminate data 
hazards is also written back to the RF. 
In the bypass network, the compiler 
explicitly manages the forwarding 
and writing to the RF to eliminate 
unnecessary RF writes.

Flexible Functional 
Units

In typical SIMD architectures, 
power and performance are lost 
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Figure 2. AnySP processing element. This processing element architecture consists of 
integrated SIMD and scalar datapaths.



when the vector size is smaller than 
the SIMD width as a result of underuti-
lized hardware. AnySP adds another 
level of configurability to the datapath 
by using FFUs as the core computa-
tion units. When SIMD utilization is 
low, the FFUs can chain back-to-back 
the FFUs between neighboring lanes. 
This effectively turns two SIMD lanes 
into a 2-deep execution pipeline. Two 
different instructions can be chained 
through the pipeline, and data is 
passed between them without writ-
ing back to the RF.

As Figure 3 shows, each 8-wide SIMD 
group is built from four 2-wide FFUs. 
Algorithms with SIMD widths smaller 
than 64 benefit from this structure. 
In chained-execution mode, the func-
tional units among two internal lanes 
can be connected through a crossbar 
network. Overall, FFUs improve per-
formance and reduce power by adding 
more flexibility. AnySP only chains 
pairs of lanes together, but the tech-
nique can be expanded to chain larger 
numbers of lanes.

Swizzle Network
The number of distinct swizzle pat-

terns needed for a specific algorithm 
is small, fixed, and known in advance. 
Previous research has explored build-
ing application-specific crossbars 
for SIMD processors (P. Raghavan 
et al., “A Customized Crossbar for 
Data-Shuffling in Domain-Specific 
SIMD Processors,” Proc. Architec-
tures for Computing Systems (ARCS 
2007), LNCS 4415, Springer, 2007, 
pp. 57-68), but these lack flexibility 
because they cannot support new 
swizzle operations for applications 
that emerge postfabrication. AnySP 
proposes using an SRAM-based 
swizzle network that adds flexibility 
while maintaining the performance 
of a customized crossbar. The pro-
posed network is similar to the work 
of N. Goel, A. Kumar, and P.R. Panda 
(“Power Reduction in VLIW Processor 
with Compiler Driven Bypass Net-
work, Proc. 20th Int’l Conf. VLSI Design 
(VLSID 07), ACM Press, 2007, pp. 233-
238) in that the X-Y style crossbar lays 
out the input buses horizontally and 
the outputs vertically.

Each point of intersection between 
the input and output buses contains 
a pass transistor controlled by a 

flip-flop. Multiple sets of swizzle con-
figurations are stored in the SRAM 
cells, allowing zero-cycle delay for 
changing the swizzle pattern. By stor-
ing multiple configurations, many 
control wires can be removed, and 
the network’s area and power con-
sumption can be reduced while still 
operating within a single clock cycle. 
For crossbar sizes larger than 32 × 32,  
power is dramatically lower than the 
MUX-based alternative and can run 
at almost twice the frequency. For 
example, a 128 × 128 SRAM-based 
swizzle network consumes less than 
30 percent of the power consumed by 
an equivalent MUX-based crossbar.

Though only a certain number of 
swizzle patterns can be loaded at a 
time without reconfiguration, this 
approach provides a viable solution 
because only a small set of swizzle 
patterns are needed for each algo-
rithm. The swizzle network has lower 
power and provides more function-
ality than the permutation networks 
found in typical SIMD architectures 
by also supporting multicasting 
capabilities along with the swizzle 
patterns. 

Multiple output adder 
tree support

Many SIMD architectures have 
special SIMD summation hardware 
to perform reduction-to-scalar oper-
ations. To compute this, adder trees 
sum up the values of all lanes and 
store the result in the scalar RF. While 
this worked for 3G algorithms, many 
of the video decoding algorithms 
needed sums shorter than the SIMD 
width. In the AnySP architecture, the 
adder tree allows for partial summa-
tions of 4 through 64 elements, which 
are then written back to the tempo-
rary buffer unit.

A 4-PE AnySP system running 
at 300 MHz with an ARM 
Cortex-M3 serving as the 

control processor met the through-
put requirements of 100 Mbps 4G 
wireless while consuming 1.3 W at 
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90 nm. This falls short of the 1,000 
Mops/mW efficiency target, but close 
enough to meet it in 45-nm process 
technology. H.264 video decoding 
at 30 fps is achieved with 60 mW at 
90 nm, meeting the requirements 
for mobile HD video. The power 
breakdown of AnySP shows that 
the SIMD functional units domi-
nate power consumption, followed 
by the register file and rest of the 
datapath. AnySP was designed to 
demonstrate that power efficiency 
can be achieved on a fully program-
mable processor in the context of 
a future mobile terminal support-
ing 4G wireless and high-definition 
video coding. Programmability is 
essential moving forward to provide 
a hardware substrate that allows the 
software to evolve naturally.

AnySP features a configurable 
SIMD datapath that supports wide 
and narrow vector lengths; flexible 

functional units, which can chain 
together narrow SIMD instructions 
using neighboring SIMD lanes; tem-
porary buffers and a bypass network 
that reduce register and memory 
accesses; an SRAM-based swizzle 
network that reduces the power 
and latency of data shuffling opera-
tions; and a flexible multiple-output 
adder tree, which speeds up video 
applications.

Industry will continue to build 
heterogeneous systems consisting 
of programmable processors and 
hardwired ASICs, but it is already 
trying to reduce the number of dis-
tinct intellectual property blocks in 
designs to reduce cost and manage 
complexity. We expect features 
such as those in AnySP to slowly 
integrate into mainstream mobile 
architectures, achieving a fully 
programmable, mobile supercom-
puter. 
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