
93JANUARY 2010

EMBEDDED COMPUTING

Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE	

Mobile Supercomputers
for the Next-Generation
Cell Phone

M obile devices have
prol i ferated at a
spectacular rate, with
more than 3.3 bil-

lion active cell phones in the world.
Soon, improvements to today’s smart
phones, such as high-bandwidth
internet access, high-definition video
processing, and interactive video
conferencing will be commonplace.

The Internat iona l Telecom-
munications Union has proposed
fourth-generation (4G) wireless tech-

nology to increase bandwidth to
maximum data rates of 100 Mbps for
high-mobility situations and 1 Gbps
for stationary and low-mobility sce-
narios like Internet hot spots (www.
ieee802.org/secmail/pdf00204.pdf).
This translates into an increase in
computational requirements of 10 to
1,000 times over previous third-gener-
ation (3G) wireless technologies, with
a power budget of approximately 1W
for all the computation. Other forms
of signal processing, such as high-def-

inition video, are also up to 100 times
more compute-intensive than current
mobile video. Figure 1 shows the peak
processing throughputs and power
budgets of 3G and 4G protocols. Con-
ventional processors cannot meet
these protocols’ power-throughput
requirements.

Research solutions, such as VIRAM
and Imagine, can achieve the per-
formance requirements for 3G, but
generally exceed the power budgets
of mobile terminals. The signal-
processing on demand architecture
(SODA) improved upon these solu-
tions and could meet both the power
and throughput requirements for 3G
wireless (Y. Lin et al., “SODA: A Low-
Power Architecture for Software
Radio,” Proc. 33rd Ann. Int’l Symp.
Computer Architecture, 2006, pp.
89-101).

For 4G wireless protocols, the
computational efficiency of mobile
computer systems must be increased
to greater than 1,000 Mops/mW.
4G uses three central technologies:
orthogonal frequency division mul-
tiplexing (OFDM), low-density parity
check (LDPC) code, and multiple-input
multiple-output (MIMO) techniques.

	 Mark Woh, Scott Mahlke, and Trevor Mudge, University of Michigan

	 Chaitali Chakrabarti, Arizona State University

AnySP demonstrates that power efficiency can be achieved on a
fully programmable processor in the context of a future mobile
terminal supporting 4G wireless and high-definition video
coding.

1

10

100

1,000

10,000

0.1 1 10 100

SODA
(65nm) SODA

(90nm)

TI C6X

Imagine

VIRAM Pentium M

IBM Cell

Pe
rfo

rm
an

ce
 (G

op
s)

Power (watts)

3G Wireless

4G Wireless

Mobile HD
video

Better

power e�ciency

1,000 M0ps/mV

100 M0ps/mV

10 M0ps/mV

1 M0ps/mV

Figure 1. Peak processing throughputs and power budgets of 3G and 4G protocols.
Conventional processors cannot meet these power-throughput requirements.

Next-generation mobile computer system designs must
address three issues: efficiency, programmability, and
adaptivity.

computer	94

EMBEDDED COMPUTING

Fast Fourier transforms (FFTs) are
key because they route signals from
the baseband to the subcarriers.
LDPC codes provide superior error-
correction capabilities, however,
parallelizing the LDPC decoding algo-
rithm is more challenging because of
the large amount of data shuffling.
MIMO is based on the use of multiple
antennae for both transmission and
signal reception and requires com-
plex signal-detection algorithms.
The need for higher bandwidth and
increased computational complex-
ity are the main reasons for the
two-orders-of-magnitude increase
in processing requirements when
moving from 3G to 4G.

High-definition video is also an
important application that these plat-
forms must support. Figure 1 shows
that the performance requirements of
video exceed those of 3G wireless, but
are less than those for 4G wireless.
However, the power budget dedi-
cated to video is generally smaller.
Moreover, the data access complex-
ity in video is much higher than
wireless, since algorithms operate
on two- or three-dimensional blocks
of data. Thus, video applications
push designs to have more flexible,
higher-bandwidth memory systems.
High-definition video is just one
example of a growing class of appli-
cations with diverse computing and
memory requirements that next-gen-
eration mobile devices must support.

Next-Generation Design
Strategies

3G mobi le c omput er s y s -
tems employ a combination of
general-purpose processors, digital-
signal processors, and hardwired
accelerators to provide the giga-oper-
ations-per-second performance on

milliWatt power budgets that today’s
cell phones require. However, such
heterogeneous organizations are
inefficient for companies to use in
developing, building, and maintain-
ing software. Further, as the amount
of functionality integrated onto their
mobile terminal increases, hard-
wired solutions waste silicon area
and power with many single-use
hardware blocks.

Next-generation mobile computer
system designs must address three
issues: efficiency, programmability,
and adaptivity. The existing compu-
tational efficiency of 3G solutions is
inadequate and must be increased for
4G. As a result, straightforward scal-

ing of 3G solutions by increasing cores
or data-level parallelism is inadequate.
Programmability provides the oppor-
tunity for a single platform to support
multiple applications and even multi-
ple standards within each application
domain. Last, hardware adaptivity is
necessary to maintain efficiency as
the core computational characteristic
of the applications change.

3G solutions rely heavily on the
widespread amounts of vector paral-
lelism in wireless signal processing
algorithms, but lose most of their
efficiency when vector parallelism is
unavailable or constrained, as hap-
pens with high-definition video.

Designing efficient architectures
for future mobile systems requires
analyzing the anticipated workloads.
While performing detailed analysis
of the computation kernels for 4G
wireless and high-definition video
encoding and decoding (h.264), we
elicited five key insights:

•	 Opportunities for single-instruc-
t ion, mult iple data (SIMD)
parallelism vary widely across

the algorithms. Some have large
inherent vectors, up to 1,024 ele-
ments in length. However, most
algorithms have small to moder-
ate vectors.

•	 Algorithms with smaller vector
lengths frequently contain a
high degree of identical threads,
where each thread performs the
same instructions, but on discon-
tinuous data. A large percentage
of temporary values generated
during the computation are
short-lived and need not be saved
to a register file.

•	 There is a small set of arithmetic
instruction pairs that occur with
high frequency.

•	 Each algorithm repeatedly uses a
small set of predetermined data-
shuffling patterns.

AnySP Mobile
Supercomputer

To address these challenges, we
highlight the AnySP advanced-signal-
processing architecture proposed by
researchers at the University of Michi-
gan, Arizona State University, and
ARM Limited (M. Woh et al., “AnySP:
Anytime Anywhere Anyway Signal
Processing,” Proc. 36th Ann. Int’l
Symp. Computer Architecture, 2009,
pp. 128–139). AnySP seeks to create a
fully programmable architecture that
supports 4G wireless communication
and high-definition video decoding.

Such a design would need to reach
the computation efficiency levels of
nearly 1,000 Mops/mW that only ASIC
solutions have achieved previously.
Programmability is recognized as a
first-class design constraint, thus no
fixed-function hardware blocks are
employed.

To overcome the typical pitfalls of
relying on SIMD parallelism across a
wide variety of algorithms, a configu-
rable SIMD datapath is created. This
supports three execution scenarios:
wide vector computation (64 lanes),
multiple independent narrow vector
computation threads and chained
computation subgraphs on moder-

95JANUARY 2010

ately wide vector computation. This
inherent flexibility lets the datapath
be customized to the application while
still retaining the high execution effi-
ciency that SIMD offers by reducing
control overhead. AnySP also attacks
the traditional inefficiencies of SIMD
computation: register file power, data
shuffling, and reduction operators.

Figure 2 shows the AnySP process-
ing element (PE) architecture, which
consists of integrated SIMD and scalar
datapaths. The SIMD datapath in turn
consists of eight groups of 8-wide
SIMD units, which can be configured
to create SIMD widths of 16, 32, and
64. Each of the 8-wide SIMD units
comprises groups of flexible func-
tional units (FFU). The FFUs contain
the functional units of two lanes con-
nected through a simple cross bar.
Eight SIMD register files (RFs) feed the
SIMD datapath and each 8-wide RF
has 16 entries. The data shuffle—or
swizzle—network aligns data for the
FFUs. It can support a fixed number of
swizzle patterns of 8-, 16-, 32-, 64-, and
128-wide elements. Finally, a multiple
output adder tree can sum groups of
4, 8, 16, 32, or 64 elements, then store
the results in a temporary buffer.

The local memory consists of 16
memory banks. Each bank is an 8-wide
SIMD containing 256 16-bit entries,
totaling 32 Kbytes of storage. Each
8-wide SIMD group has a dedicated
address generation unit (AGU). When
not in use, the AGU can run sequen-
tial code to assist the dedicated scalar
pipeline. The AGU and scalar unit
share the same memory space as the
SIMD datapath. To accomplish this, the
design includes a scalar memory buffer
that can store 8-wide SIMD locations.
Because many of the algorithms access
data sequentially, the buffer acts as a
small cache that helps to avoid multiple
vector-bank accesses.

Configurable Multi-SIMD
Width Support

The individual algorithms in the
applications that we studied had
varying SIMD widths. However, inde-

pendent threads were not dominant.
Rather, the system would run the
same task many times for different
sets of data. Each task was indepen-
dent of others, running the exact
same code and following almost
the same control path with the only
difference being the set of memory
addresses accessed.

To support these types of kernel
algorithms, AnySP was designed as a
multi-SIMD-width architecture. Each
group of 8-wide SIMD units has its
own AGU to access a different data
stream. The 8-wide groups can also
be coalesced to create SIMD widths
of 16, 32, or 64. This feature lets the
system exploit data and thread par-
allelism together for large and small
SIMD-width algorithms.

Small SIMD-width algorithms like
intraprediction and motion compen-
sation from h.264 video decoding can
process multiple macroblocks at the
same time while exploiting the 8-wide
and 16-wide SIMD parallelism within
the algorithms. Meanwhile, large
SIMD-width algorithms like FFT and
LDPC can use the full 64-width SIMD.

Temporary Buffer and
Bypass Network

AnySP implements temporary
register buffers and a bypass net-
work to reduce power consumption
and the number of RF accesses. The
temporary register buffers are imple-
mented as a partitioned RF. The
main RF contains 16 registers, but
the design also adds a second parti-
tion containing four registers, making
20 registers total. This small, parti-
tioned RF shields the main RF from
accesses by storing values that have
short lifetimes.

The bypass network is a modi-
fication to the writeback stage and
forwarding logic. Typically, in proces-
sors, data forwarded to eliminate data
hazards is also written back to the RF.
In the bypass network, the compiler
explicitly manages the forwarding
and writing to the RF to eliminate
unnecessary RF writes.

Flexible Functional
Units

In typical SIMD architectures,
power and performance are lost

C
R
O
S
S
B
A
R

Scalar Pipeline

Bank
0

Bank
2

Bank
3

Bank
15

L1
Program
Memory

Controller

Bank
4

Bank
5

16-bit 8-wide
16 entry

SIMD RF-0

Scalar
memory
bu�er

Multi-SIMD datapath

AGU Group 0 Pipeline

AGU Group 7 Pipeline

AGU Group 1 Pipeline

Multibank
local memory

DMA

To
Inter-PE

bus

AnySP PE

…

… … …

…

16-bit 8-wide
16 entry

SIMD RF-1
16-bit 8-wide

16 entry
SIMD RF-2

16-bit 8-wide
16 entry

SIMD RF-7

8-wide SIMD
FFU-0

8-wide SIMD
FFU-2

8-wide SIMD
FFU-7

8-wide SIMD
FFU-1

Multi-lane
permutation

network

16-bit 8-wide
4-entry

bu�er-0
16-bit 8-wide

4-entry
bu�er-1

16-bit 8-wide
4-entry

bu�er-2

16-bit 8-wide
4-entry

bu�er-7

Multi-
output
adder
tree

8 groups
of 8-wide

SIMD
(64 total
lanes)

Figure 2. AnySP processing element. This processing element architecture consists of
integrated SIMD and scalar datapaths.

when the vector size is smaller than
the SIMD width as a result of underuti-
lized hardware. AnySP adds another
level of configurability to the datapath
by using FFUs as the core computa-
tion units. When SIMD utilization is
low, the FFUs can chain back-to-back
the FFUs between neighboring lanes.
This effectively turns two SIMD lanes
into a 2-deep execution pipeline. Two
different instructions can be chained
through the pipeline, and data is
passed between them without writ-
ing back to the RF.

As Figure 3 shows, each 8-wide SIMD
group is built from four 2-wide FFUs.
Algorithms with SIMD widths smaller
than 64 benefit from this structure.
In chained-execution mode, the func-
tional units among two internal lanes
can be connected through a crossbar
network. Overall, FFUs improve per-
formance and reduce power by adding
more flexibility. AnySP only chains
pairs of lanes together, but the tech-
nique can be expanded to chain larger
numbers of lanes.

Swizzle Network
The number of distinct swizzle pat-

terns needed for a specific algorithm
is small, fixed, and known in advance.
Previous research has explored build-
ing application-specific crossbars
for SIMD processors (P. Raghavan
et al., “A Customized Crossbar for
Data-Shuffling in Domain-Specific
SIMD Processors,” Proc. Architec-
tures for Computing Systems (ARCS
2007), LNCS 4415, Springer, 2007,
pp. 57-68), but these lack flexibility
because they cannot support new
swizzle operations for applications
that emerge postfabrication. AnySP
proposes using an SRAM-based
swizzle network that adds flexibility
while maintaining the performance
of a customized crossbar. The pro-
posed network is similar to the work
of N. Goel, A. Kumar, and P.R. Panda
(“Power Reduction in VLIW Processor
with Compiler Driven Bypass Net-
work, Proc. 20th Int’l Conf. VLSI Design
(VLSID 07), ACM Press, 2007, pp. 233-
238) in that the X-Y style crossbar lays
out the input buses horizontally and
the outputs vertically.

Each point of intersection between
the input and output buses contains
a pass transistor controlled by a

flip-flop. Multiple sets of swizzle con-
figurations are stored in the SRAM
cells, allowing zero-cycle delay for
changing the swizzle pattern. By stor-
ing multiple configurations, many
control wires can be removed, and
the network’s area and power con-
sumption can be reduced while still
operating within a single clock cycle.
For crossbar sizes larger than 32 × 32,
power is dramatically lower than the
MUX-based alternative and can run
at almost twice the frequency. For
example, a 128 × 128 SRAM-based
swizzle network consumes less than
30 percent of the power consumed by
an equivalent MUX-based crossbar.

Though only a certain number of
swizzle patterns can be loaded at a
time without reconfiguration, this
approach provides a viable solution
because only a small set of swizzle
patterns are needed for each algo-
rithm. The swizzle network has lower
power and provides more function-
ality than the permutation networks
found in typical SIMD architectures
by also supporting multicasting
capabilities along with the swizzle
patterns.

Multiple output adder
tree support

Many SIMD architectures have
special SIMD summation hardware
to perform reduction-to-scalar oper-
ations. To compute this, adder trees
sum up the values of all lanes and
store the result in the scalar RF. While
this worked for 3G algorithms, many
of the video decoding algorithms
needed sums shorter than the SIMD
width. In the AnySP architecture, the
adder tree allows for partial summa-
tions of 4 through 64 elements, which
are then written back to the tempo-
rary buffer unit.

A 4-PE AnySP system running
at 300 MHz with an ARM
Cortex-M3 serving as the

control processor met the through-
put requirements of 100 Mbps 4G
wireless while consuming 1.3 W at

computer	96

EMBEDDED COMPUTING

P
e
r
m
u
t
e
N
e
t
w
o
r
k

P
I
P
E
L
I
N
E

8-wide
SIMD FFU7

16-bit
8-wide 4-entry

bu�er 7

Inside the 8-wide SIMD FFU

P
I
P
E
L
I

N
E

P
I
P
E
L
I

N
E

Reg A

Lane 0

Lane 1

Mult

ALU

Permute

Adder

Reg B

Mult

ALU

Permute

Adder

Reg B

Reg A

Inside the 2-wide �exible functional unit slice

SRAM
Xbar

16-bit
4-entry
bu�er

16-bit
4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

4-entry
bu�er

2-wide
FFU-0

2-wide
FFU-1

2-wide
FFU-2

2-wide
FFU-3

Figure 3. Design of a flexible functional unit that supports chaining of neighboring
lanes to pipeline the execution of 2-deep computation subgraphs.

97JANUARY 2010

90 nm. This falls short of the 1,000
Mops/mW efficiency target, but close
enough to meet it in 45-nm process
technology. H.264 video decoding
at 30 fps is achieved with 60 mW at
90 nm, meeting the requirements
for mobile HD video. The power
breakdown of AnySP shows that
the SIMD functional units domi-
nate power consumption, followed
by the register file and rest of the
datapath. AnySP was designed to
demonstrate that power efficiency
can be achieved on a fully program-
mable processor in the context of
a future mobile terminal support-
ing 4G wireless and high-definition
video coding. Programmability is
essential moving forward to provide
a hardware substrate that allows the
software to evolve naturally.

AnySP features a configurable
SIMD datapath that supports wide
and narrow vector lengths; flexible

functional units, which can chain
together narrow SIMD instructions
using neighboring SIMD lanes; tem-
porary buffers and a bypass network
that reduce register and memory
accesses; an SRAM-based swizzle
network that reduces the power
and latency of data shuffling opera-
tions; and a flexible multiple-output
adder tree, which speeds up video
applications.

Industry will continue to build
heterogeneous systems consisting
of programmable processors and
hardwired ASICs, but it is already
trying to reduce the number of dis-
tinct intellectual property blocks in
designs to reduce cost and manage
complexity. We expect features
such as those in AnySP to slowly
integrate into mainstream mobile
architectures, achieving a fully
programmable, mobile supercom-
puter.

Mark Woh is a PhD candidate in the
Department of Electrical Engineering
and Computer Science at the Uni-
versity of Michigan. Contact him at
mwoh@umich.edu.

Scott Mahlke is an associate profes-
sor in the Department of Electrical
Engineering and Computer Science
at the University of Michigan. Contact
him at mahlke@umich.edu.

Trevor Mudge is Bredt Family Profes-
sor of Engineering in the Department
of Electrical Engineering and Com-
puter Science at the University of
Michigan. Contact him at tnm@umich.
edu.

Chaitali Chakrabarti is a professor of
electrical engineering at Arizona State
University. Contact her at chaitali@
asu.edu.

Editor: Tom Conte, College of Computing,
Georgia Institute of Technology; conte@
cc.gatech.edu

